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ABSTRACT 
Smart manufacturing can be referred as an important consequence of Fourth Industrial Revolution. With 
the advent of this revolution, manufacturing companies must use numerous new technologies to become 
smart. According to these new technologies, companies face multifaceted challenges.  The Internet of 
Things (IoT) technology is one of the achievements of Industry 4.0, which plays an important role in the 
implementation of smart manufacturing. IoT using in smart manufacturing is called Internet of 
Manufacturing Things (IoMT Like other technologies, IoMT  has its own challenges. Therefore, 
manufacturing organizations must be able to identify these challenges and concentrate on them based on 
their priority. In this study, by reviewing the literature, the challenges of using the Internet of Things in 
smart manufacturing were identified. Then Interpretive Structural Modeling (ISM) technique was used to 
prioritize challenges in the automotive industry. Based on the research findings, the challenges were 
classified into three levels. This leveling provides a suitable model for automotive industry managers to be 
able to prioritize their strategies and actions accordingly..  
Keywords: Smart manufacturing, Internet of things, Internet of Manufacturing Things (IoMT), 
Challenges, Interpretive Structural Modeling (ISM). 

1. Introduction 

In recent years, in the field of wireless communications and networking, a new paradigm called the 
Internet of Things (IoT) has attracted the attention of many researchers and industrialists. The Internet of 
Things can be defined as a network of physical objects that are digitally connected so that they could sense, 
monitor, and influence each other (Xu et al. 2022). A supply chain is also a network that requires monitoring 
and control of relationships between components. Therefore, the use of IoMT in different parts of the supply 
chain can facilitate communication and cooperation between partners and processes within it. By using the 
Internet of Things in manufacturing (as part of supply chain processes), smart manufacturing is formed. 
According to the definition presented by Smart Manufacturing Leadership Coalition (SMLC), smart 
manufacturing is “the right data in the right form, the right people with the right knowledge, the right 
technology, and the right operations, whenever and wherever the production needed throughout the 
manufacturing enterprise” (Edgar and Pistikopoulos 2018). Another definition was provided by National 
Institute of Standard and Technology, (NIST), based on which smart manufacturing is “fully integrated, 
collaborative manufacturing systems that respond in real time to meet changing demands and conditions 
in the factory, in the supply network, and in customer needs”. 

As with previous manufacturing parameters, smart manufacturing has also developed in the automotive 
industry. The automotive industry is regarded as a key industry in terms of its extensive relationship with a 
chain of industries before and after it and has a high potential for economic development. As stated in the 
philosophy of production paradigms, concepts such as mass production, lean production and world-class 
manufacturing, which have revolutionized various industries, were first introduced and implemented for in 
the automotive industry (mass production at Ford Motor Company, Lean production and World Class 
manufacturing in Toyota company). (Ebrahimi, Baboli, and Rother 2019). Consequently, the present study 
seeks to examine the challenges of the Internet of Things in smart manufacturing as a new production 
paradigm in the automotive industry. 



 

In addition to the dramatic change in the automotive industry, the Internet of Things has affected the 
performance of automakers and the software they use, thus trying to maximize values (Krasniqi and Hajrizi 
2016). Smartening the automotive industry will bring benefits such as lower costs, energy savings, 
environmental protection, and efficient after-sales service (Liu et al. 2012). To achieve these goals, there 
are serious challenges in smartening and implementing IoMT.  In the last decade, these challenges have 
been introduced in conducted research in the field of smart manufacturing and the Internet of Things. (Afzal 
et al. 2019; Chen et al. 2014; Cooper and James 2009; Farahani et al. 2018; Furnell et al. 2009; Kumar and 
Mallick 2018; Lee and Lee 2015; Lim, Kim, and Maglio 2018; Makhdoom et al. 2019; Reyna et al. 2018), 
However, but it is not possible to consider and address all challenges simultaneously. Therefore, it must be 
determined at what level each challenge is and which challenges are prioritized. Using ISM technique to 
level the challenges and consequently their management in IoMT deployment is also considered as an 
contribution of the innovation in the present study. 

This paper is organized as follows. In section 2, the IoMT implementation challenges were extracted by 
reviewing the IoMT literature and its application in smart manufacturing. Section 3 describes the steps of 
research and ISM technique. Section 4 includes the leveling of the challenges introduced in this research. 
Finally, section 5 presents the results of the research. 

2. Literature and Research Background 

2-1. Internet of Things (IoT) and Internet of manufacturing Things (IoMT) 

The Internet Plus initiative has been developed by Chinese Premier Li Keqiang as a way to accelerate 
China's slowing economy. This initiative aims to link the Internet and related information technology fields 
to current industries to increase productivity and economic growth. Cloud computing, mobile Internet, big 
data utilization, the Internet of Things, etc can be considered as the pillars of Internet Plus (Hristov 2017). 

The Internet of Things was first introduced by Kevin Ashton in 1999 through the Auto-ID Center at MIT. 
For Ashton, "Internet of Things" means all objects and people equipped with computers, sensors, and the 
Internet that can be managed. He also introduced Radio-frequency identification (RFID) as a prerequisite 
for it (Dhumale1, Thombare, and Bangare 2017). The Internet of Things has features such as connectivity 
to remote data collection, analysis, and management capabilities that minimize human intervention in the 
production, transmission, and use of data (Rose et al. 2015) 

There are two different aspects to the Internet of Things (See Figure (1)): Information Technology (IT) 
and Operational Technology (OT) (Khan, Khan, and Haleem 2020) .. IT is the “objects” such as servers, 
databases, and applications. Networks run these objects while IT controls them. IT makes sure that the 
connections between data in a company are safe and reliable. OT is mainly concerned with industrial 
interactions. This aspect consists of sensors, systems connected to machines, and other types of equipment 
that control the performance of physical systems. Before IoT, two concepts of IT and OT were two different 
poles that worked separately and did not need to interact with each other. However, IoT is here to combine 
these two concepts as it is based on a world of inter-related objects (Khan et al. 2020). 
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Figure 1. Venn Diagram of IoT (Khan et al. 2020) 

 

According to research conducted in this area, several researchers have proposed some definitions for IoT 
(Table 1), although there is an overlap in these definitions. 

 

Table 1. Definition of IoT 

References Definitions 

(Satyavolu et 
al. 2014) 
 

The Internet of Things includes objects or ‘things’ that have sensors embedded in them to 
enable them to communicate its state with other objects and automated systems in the 
environment. 

(Dorsemaine et 
al. 2016). 

IoT “connects a group of interconnected infrastructures and objects and allows their 
management to extract and analyze data. In IoT, connected objects are sensors that create 
a specific function and communicate with other equipment”. 

(Rose et al. 
2015) 

The term IoT refers to the extension of network connectivity and the capability to compute 
objects, devices, and sensors that are not normally considered as computers. These smart 
objects require minimal human intervention in the production, exchange and consumption 
of data. They often include the feature of connectivity to remote data collection, analysis 
and management capabilities. 

 

The objects mentioned in the above definitions represent a node in a virtual network that continuously 
transmits a large volume of data about itself and other network components (Satyavolu et al., 2014). Things 
that are deployed in IoT are (i) RFID tags, for unique identification, (ii) sensors, for detecting physical 
changes in the environment, and (iii) actuators, for transmitting information to the environment (Lanotte 
and Merro 2018). 

In IoT, objects are generally objects of the physical things or virtual things that can be identified and 
integrated into communication network  Physical objects exist in the physical world and are capable to be 
sensed and / or actuated upon and / or connected. sensors of surrounding environments, industrial robots, 
goods, and electrical equipment are examples of physical objects. Virtual objects exist in the virtual world 
and have the capability to be stored, processed and accessed. Examples of virtual objects are multimedia 
contents, application software, and service representations of physical things (Lee1 et al. 2013). 

The end point of communication in IoT can be humans or objects (devices / machines). As a consequence, 
two categories of communication are considered for IoT (Lee1 et al. 2013). Human-to-Object (Thing) 
Communication: Humans communicate with a device to obtain specific information, which includes remote 



 

access to objects by humans. Object-to-Object (Thing-to-Thing) Communication: An Object delivers 
information to another object that may or may not be human. 

Before industrialization, most of the work had to be done by manpower. After the first industrial 
revolution, machines and human resources started a corroboration by which the manufacturing time was 
reduced, the quality of the products was increased, and the general productivity was ameliorated. Even now, 
in the era of the Fourth Industrial Revolution, Technologies like IoT are used to improve productivity, 
reliability, and accessibility of financial resources to open new doors to how products are made and 
introduced to the market. Internet of Manufacturing Technology (IoMT) is the application of IoT in 
Manufacturing. IoT systems are introduced in the previous section. Before defining IoMT, it is better to 
define Manufacturing Things. Manufacturing Things are all the essential instruments and physical 
equipment a factory needs to turn raw material into the finished product. Workforce, machines, work-in-
progress items, and many other company objects are considered manufacturing things (Zhang et al. 2014). 
IoMT is an optimized system for managing driving manufacturing data that optimally control 
manufacturing processes from placing the orders to manufacturing the finished product and selling it 
(Zhang et al. 2014). In another sense, IoMT is all the manufacturing steps, processes, and generally the 
whole manufacturing cycle in a factory. IoMT is an open network system that combines advanced 
manufacturing, IoT, information, and modern management (Li et al. 2018). IoM has two parts: software 
and hardware. Hardware is all the Auto-ID systems that hold manufacturing data, while software is several 
application services responsible for backing up the decision-making process (Zhang et al. 2014). 

The application of the Internet of Things in smart manufacturing 

The application of IoT in various fields is increasing rapidly. The Internet of Things can be used in a 
variety of areas, including smart manufacturing, smart grid, smart healthcare, smart home, and smart city. 
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Figure 2. IoT Application 

 

As can be seen in Figure (2), one of the application of the Internet of Things is in smart manufacturing. 
The goal of smart manufacturing is to improve productivity, efficiency, reliability and better control of final 
products (Kouicem, Bouabdallah, and Lakhlef 2018). Smart manufacturing includes new technologies such 



 

as machine-to-machine (M2M) communication, wireless sensor networks (WSNs), automation 
technologies, as well as big data and the Internet of Things. 

The IoT approach is an ideal solution for automating and controlling the manufacturing process and plays 
an important role in creating a communication infrastructure for information acquisition and its sharing. 
Real-time data of actuators is not limited and resilient to changes, but RFID and WSN are effective tools 
in supporting the distribution and decentralization of production resources. The IoT architecture is dynamic 
which facilitates the integration of information by combining the host company and other virtual companies 
to conduct projects throughout the company. Dynamic relationships are created for specific projects. After 
the completion of the project, this combination can be changed and the company is ready to do another 
project. To conduct manufacturing projects, some human-to-human, human-to-object, and object-to-object 
interactions take place. With the development of the Internet of Things, all of these interactions can be 
integrated. In this way, partners can focus on multiple decisions that require integrated and compact 
information and high computing power, rather than worrying about interactions. Manufacturing companies 
use multiple computer resources such as servers and databases as well as decision units. This leads to the 
waste of investment, failure in utilization of production resources, low productivity and improper 
information exchange among servers. Cloud computing provides a vital solution to these problems. All data 
is stored on public or private cloud servers, and complex decisions can be supported using cloud computing 
(Zhuming Bi, Li Da Xu, and Chengen Wang 2014). According to the stated cases above, IoT affects all 
parts of the production chain (communications, information, decision-making, etc.). Therefore, examining 
the challenges of implementing IoT in manufacturing companies can in be identifying critical points and 
taking necessary actions measures. 

2-2. Challenges of using IoMT in manufacturing 

The development and application of IoMT affects various aspects of human life (such as security, 
healthcare, productivity, energy, environmental sustainability, etc.). A review of the literature revealed that 
IoMT challenges were introduced in various fields such as healthcare and treatment (Farahani et al. 2018) 
and blockchain (Kumar and Mallick 2018; Makhdoom et al. 2019). Many studies have examined the 
conceptual study of this field (Afzal et al. 2019; Chen et al. 2014; Cooper and James 2009; Farahani et al. 
2018; Furnell et al. 2009; Khan and Salah 2018; Kumar and Mallick 2018; Makhdoom et al. 2019; Reyna 
et al. 2018). Some studies have specifically identified security challenges (Khan and Salah 2018; Kumar 
and Mallick 2018) and data management challenges (Cooper and James 2009). The gap seen in the literature 
is the study of the challenges of the Internet of Things in the manufacturing industry. IoMT implementation 
and deployment in the manufacturing industry requires infrastructure that is certainly associated with 
organizational, hardware, and software issues and challenges. By reviewing the literature on the application 
of IoMT in smart manufacturing, the challenges of Table (2) were identified. 

 



 

Table 2.  .Challenges of using  IoMT 
Challenges  Definition References 

Data management and 
integrity 

C1 

Applying the IoMT approach creates a large amount of homogeneous and 
heterogeneous data; data analysis in different time periods can produce 
practical results for the organization. Most data centers do not have the 
capability to process, integrate and store this data on individual or 
organizational dimensions. 

(Cooper and James 2009; Farahani et al. 2018; 
Kamali et al. 2018; Lee and Lee 2015; Lim et 
al. 2018; Nasrollahi and Ramezani 2020) 

Sensitive data access 
control 

C2 

With the deployment of the IoMT approach and due to wide variety of data 
types, the level of user access to important and sensitive data is critical for the 
organization and the lack of a coherent strategy for how users access, disrupts 
the security of the information system. 

(Furnell et al. 2009) 
 

Storage capacity and 
scalability 

C3 

In IoMT, data and equipment integration is critical; therefore, all processes and 
devices need to be considered at maximum capacity so that in case of their 
development, there will be no disruption to their speed and utilization for 
stakeholders. This is possible by using tools such as smartphones. 

(Farahani et al. 2018; Reyna et al. 2018) 

User privacy C4 
IoMT, integrates and manages many issues related to individuals, including 
health services, welfare services, and so on. Having all the information about 
people in one software package can affect the user privacy. 

(Afzal et al. 2019; Chen et al. 2014; Khan and 
Salah 2018; Lee and Lee 2015; Lim et al. 2018; 
Reyna et al. 2018) 

Lack of security and 
trust management 

C5 

The available hardware and software on the IoMT platform are extremely 
vulnerable due to lack of encryption, insecure web interface and other security 
issues, and consequently hackers can access all the information on the 
platform, which creates insecurity for organizations and distrust for 
individuals. 

(Afzal et al. 2019; Farahani et al. 2018; Kamali 
et al. 2018; Khan and Salah 2018; Khan and 
Turowski 2016; Kumar and Mallick 2018; Lee 
and Lee 2015; Makhdoom et al. 2019; 
Nasrollahi and Ramezani 2020; Reyna et al. 
2018) 

I rganizational o-ntra
resistance (Labor) 

C6 

The predominance of traditional approaches to processes, the feeling of job 
insecurity and also the lack of acceptance of technology-based approaches by 
the organization cause their high resistance and challenge the dominance of 
the IoMT platform over the organization. 

(Furnell et al. 2009) 

Integration of 
information system 
of external partners 

C7 

Business cooperation of organizations together to achieve sustainable 
competitive advantage requires integration between their information systems. 
Business partners have information systems with different processes since data 
integration from different information systems with different programming 
languages requires an integrated data system. 

(Cooper and James 2009; Furnell et al. 2009) 

Cost C8 
Implementing IoMT is a costly project that companies are reluctant to invest 
in due to the lack of transparency of the results and also the lack of cost-benefit 
analysis. 

(Afzal et al. 2019; Furnell et al. 2009; Kumar 
and Mallick 2018) 
 

Technical and 
empirical knowledge 
of management and 
staff 

C9 

Since IoMT is an emerging and novel phenomenon, management and staff 
may not have mastered the relevant technical knowledge, which in turn leads 
to disruption and sometimes resistance. Therefore, technical training of 
individuals is vital for the implementation of IoMT. 

(Furnell et al. 2009; Kamali et al. 2018) 



 

Top management 
support 

C10 
For organizations to participate in the implementation of IoMT, there is a need 
for support and understanding of IoMT and its applications by senior 
management to make the necessary changes to implement it. 

(Furnell et al. 2009; Luthra and Mangla 2018) 

Standardization C11 

The IoMT is a network with a large number of heterogeneous devices that meet 
different standards and must interact with each other. Standardization can 
improve interoperability and allow products and services to compete at higher 
levels. However, the rapid growth of the Internet of Things has made it difficult 
to establish standards including interoperability, accessibility, and security. 

(Choudhary, Virmani, and Juneja 2020; Kamali 
et al. 2018; Kumar and Mallick 2018; Kumar, 
Vrat, and Shankar 2021; Luthra and Mangla 
2018) 

Legal Issue C12 

In IoMT, there are no rules on how to use its data, as well as to fight against 
crimes that occur while using the data; therefore, the security of data and 
information, as well as the investigation of crimes from a legal point of view 
must be considered.  

(Kumar and Mallick 2018; Luthra and Mangla 
2018; Reyna et al. 2018) 

The rapid growth of 
device technology 

C13 

With the rapid growth of technology, devices and equipment in the IoMT 
network are becoming more advanced and powerful every day. Therefore, it is 
necessary that these devices have high flexibility in development or updating 
so that their replacement and relocation does not impose much cost and time 
on the organization. 

(Luthra and Mangla 2018) 

 

 



 

3. Research methodology 

The present research is applied in terms of purpose and a descriptive-survey in terms of data 
collection. In this study, the existing literature studies were used to identify the challenges of IoMT 
implementation in smart manufacturing, and on the other hand, field studies were conducted to complete 
the questionnaire. Experts of the present study are manufacturing managers and consultants active in 
the automotive industry who have work experience in the field of manufacturing and research and 
applied experience in the field of Internet of Things. The questionnaires were sent to the experts by e-
mail and among them 6 questionnaires were completed and returned by the respondents. 

In this study, in order to achieve the relationship between the challenges of IoMT and creating a 
hierarchical structure, after reviewing the literature in this area, the challenges were identified and then, 
through a questionnaire, the opinions of experts were collected. The ISM technique was used to create 
a hierarchical structure. Finally, MICMAC analysis was conducted to investigate the driving power and 
dependence power of the challenges (See Figure (3)) 
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Figure 3. Research Framework 

 

3-1. Interpretive Structural Modeling (ISM) 

Interpretive structural modeling is a systematic and structured method introduced by Warfield (1974). 
ISM is a powerful technique that breaks down a complex system into several subsystems and transforms 
it into a hierarchical model. This methodology is a combination of three demonstrating languages of 
words, diagraphs and discrete mathematics (Kaswan and Rathi 2019). ISM is used to determine the 
interaction between factors as well as to determine the impact of factors (Ali et al. 2022; Yang and Lin 
2020). One of the logics of this method is that the factors that have a greater impact on a system than 
other factors are more important. This technique helps to establish order in the complex relationships 
between the elements of a system (Agarwal et al., 2007). It can also prioritize and level the elements of 
a system, which helps managers to have a better execution of the designed model. ISM technique in 
various fields such as lean Six Sigma enablers (Kaswan and Rathi 2019) 2019), green building project 
risks (Guan et al. 2020), the study of supply chain sustainability (Chand, Thakkar, and Ghosh 2020), 
effective factors in green innovation performance (Yang and Lin 2020) and ... has been used. 

To perform the interpretive structural modeling technique and obtain the internal relationships and 
priorities of the elements in a system, six steps must be followed. First the elements/dimensions are 
determined and then a structural self-interaction matrix is obtained. The initial reachability matrix is 
then extracted and in the next step the reachability matrix is adapted. Leveling the elements of the 
reachability matrix is the next step and finally the model is drawn. 

 

Step 1. Formation of structural self-interaction matrix 



 

In this step, a pairwise comparison of the research elements is conducted. For this purpose, the scale 
presented by Bolaños et al. in 2005 is used, which is shown in Table (3). 

 

Table 3. The proposed scale for the structural self-interaction matrix formation (Bolaños et al. 2005) 

Linguistic variables number 

High influence 3 

Meduim influence 2 

Very low influence 1 

No influence 0 

  
Step 2. Creation of initial reachability matrix 

At this point, the structural self-interaction matrix becomes a binary matrix. The reachability matrix 
is obtained by determining the relationships as zero and one from the matrix obtained from the total 
opinions of the respondents in two steps: 

Sub-Step 1: First, a unit numerical scale (m) is considered and the self-interaction matrix numbers 
are compared with it. Bolanos et al. Defined these relationships as follows: 

 

Where n represents the number of respondents and m represents the value of scale. 

Sub-Step 2: In this step, the initial reachability matrix is obtained by adding the results of the first 
step with unit matrix. 

 

Step 3. Creation of the final reachability matrix 

In the next step, the final reachability matrix is formed by applying transitivity relations existing 

among the variables. 

Step 4. Determining relationships and leveling factors 

The reachability matrix in step 3 becomes a matrix with a standard framework by placing elements 
on its levels. In this step, the reachability matrix is categorized into different levels. 

To determine the level and priority of variables, a reachability set and an antecedent set are 
determined for each variable. The reachability set of each variable includes the variables that can be 
reached through this variable and the antecedent set of each variable includes the variables through 
which this variable can be reached. This is conducted using the reachability matrix. After determining 
reachability and antecedent sets for each variable, the intersection set, which includes the shared 
challenges between the reachability and the antecedent sets, is identified for each variable. 

After determining reachability, antecedent, and intersection sets, the level of variables are 
determined. In the first table, the variable with the same reachability set and intersection set occupy the 
highest level of the table. After determining this variable or variables, they will be removed from the 
table and then the next table with the rest of the variables is formed. In the second table, as in the first 



 

table, the second-level variable is specified and this process is continued to do so until the level of all 
variables is determined. 

Step 5. Drawing the initial and final interpretive structural model 

A structural model is formed using the final reachability matrix.  If there is a relationship between 
factors i and j, this relationship is indicated by an arrow going from i to j, and the ISM model diagram 
is formed. Finally, after eliminating transferability, the diagram becomes a model based on interpretive 
structural modeling. 

Finally, interpretive structural modeling is created by placing factors according to their level in a 
directional graph. Factors classified in level one are placed in the lowest hierarchy of interpretive 
structural modeling model and higher level factors are placed in the higher hierarchy of the model. 

3-2. MICMAC Analysis 

MICMAC has integrated with the ISM method to help analyze the findings. It is an analysis method 
that classifies factors into four categories according to their driving power and dependence power. 
driving power and dependence power are determined using the ISM method. The driving power of a 
factor is the total number of other factors that are influenced by it, whereas the dependence power of a 
factor includes the total number of factors that affect it. All factors can be classified into 4 categories 
(Xu and Zou 2020): 

Group 1. Autonomous factors: These factors have weak driving-power and dependence-power. 
They have few links to the system in which they are located. They cannot affect other factors or be 
affected by other factors.  

Group 2. Dependent factors: These factors have weak driving-power and strong dependence-
power. These factors are deeply influenced by linkage factors and driving factors and are less likely to 
affect other factors. 

Group 3. Linkage factors: These factors have strong driving-power and dependence-power, and 
any change on them will greatly cause the reaction of other factors. In addition, system feedback affects 
these linkage factors. 

Group 4. Driving factors: These factors have strong driving-power but weak dependence-power. 
These factors greatly affect other factors. 

4. Result 

In the present study, by reviewing the literature in the field of using the Internet of Things in smart 
manufacturing, the challenges facing this new manufacturing system have been identified in table (2). 
Due to the importance of examining the mentioned challenges in the deployment of smart 
manufacturing and also determining the priority of the challenges to take appropriate measures, their 
leveling was conducted using ISM. 

Based on the defined steps, from the aggregation of experts' opinions, the Structural Self-Interaction 
Matrix (SSIM) was formed and presented in table (4). 

 



 

Table 4. Structural Self-Interaction Matrix 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 1 16 3 2 3 3 16 2 1 2 18 3 
C2 18 0 0 16 3 1 2 3 0 0 1 2 1 
C3 17 17 0 2 1 3 2 17 1 2 1 1 1 
C4 17 2 0 0 17 2 1 1 1 2 2 1 2 
C5 0 1 3 3 0 16 1 1 0 1 1 1 3 
C6 2 3 1 1 16 0 2 0 18 16 0 15 1 
C7 3 2 3 0 2 1 0 18 1 3 13 18 2 
C8 14 1 13 0 0 0 1 0 0 18 0 0 1 
C9 0 1 0 2 1 18 3 0 0 17 2 2 1 
C10 2 0 3 1 1 17 1 1 1 0 2 1 1 
C11 18 2 1 1 2 0 18 1 1 0 0 2 14 
C12 1 2 1 0 17 1 3 3 0 18 3 0 0 
C13 3 17 17 2 2 16 1 2 17 0 16 1 0 

 
According to the structural self-interaction matrix and the scale number (m = 12), the initial 

reachability matrix was calculated (Table (5)). 

 

Table 5. Initial reachability matrix 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 1 1 1 0 1 0 0 1 0 1 0 1 0 
C2 1 1 1 1 1 0 0 1 0 0 0 1 0 
C3 1 1 1 1 0 0 0 1 0 1 0 1 0 
C4 1 0 1 1 1 1 0 1 0 0 0 1 0 
C5 0 0 0 0 1 1 0 0 1 1 0 1 0 
C6 0 0 0 0 1 1 0 0 1 1 0 1 0 
C7 1 0 1 0 1 0 1 1 0 1 1 1 1 
C8 1 1 1 0 0 1 0 1 0 1 0 1 0 
C9 0 0 0 0 1 1 0 0 1 1 0 1 0 
C10 0 0 0 0 1 1 0 0 1 1 0 1 0 
C11 1 1 1 0 0 1 1 1 1 0 1 1 1 
C12 0 0 0 0 1 1 0 0 0 1 0 1 0 
C13 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

In the next step, the final reachability matrix was formed by applying transitivity relations existing 
among the challenges. The final reachability matrix is demonstrated in table (6). 

 



 

Table 6. The final reachability matrix 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
Driving 
Power 

C1 1 1 1 1 1 1 0 1 1 1 0 1 0 10 
C2 1 1 1 1 1 1 0 1 1 1 0 1 0 10 
C3 1 1 1 1 1 1 0 1 1 1 0 1 0 10 
C4 1 1 1 1 1 1 0 1 1 1 0 1 0 10 
C5 0 0 0 0 1 1 0 0 1 1 0 1 0 5 
C6 0 0 0 0 1 1 0 0 1 1 0 1 0 5 
C7 1 1 1 1 1 1 1 1 1 1 1 1 1 13 
C8 1 1 1 1 1 1 0 1 1 1 0 1 0 10 
C9 0 0 0 0 1 1 0 0 1 1 0 1 0 5 
C10 0 0 0 0 1 1 0 0 1 1 0 1 0 5 
C11 1 1 1 1 1 1 1 1 1 1 1 1 1 13 
C12 0 0 0 0 1 1 0 0 1 1 0 1 0 5 
C13 1 1 1 1 1 1 1 1 1 1 1 1 1 13 

Dependence 
Power 

8 8 8 8 13 13 3 8 13 13 3 13 3  

 

As mentioned, each level is identified when the intersection of reachability set and antecedent set 
equals reachability set. Then the leveled factors are removed and the intersections are re-examined and 
the next level factors are determined. This algorithm continues until the leveling is conducted 
completely. The Table (7) provides reachability set, antecedent set and their intersection set as well as 
the level related to each challenge. 

 

Table 7. Level partitioning of drivers 

Challenge Reachability set Antecedent set 
Intersection 

set 
Level 

C1 2,3,4,5,6,8,9,10,12 2,3,4,7,8,11,13 2,3,4,8 2 
C2 1,3,4,5,6,8,9,10,12 1,3,4,7,8,11,13 1,3,4,8 2 
C3 2,4,5,6,8,9,10,12 1,2,4,7,8,11,13 2,4,8 2 
C4 1,2, 5,6,8,9,10,12 1,2,3,7,8,11,13 1,2,8 2 
C5 6,9,10,12 1,2,3,4,6,7,8,9,10,11,12,13 6,9,10,11 1 
C6 5,9,10,12 1,2,3,4,5,7,8,9,10,11,12,13 6,9,10,11 1 
C7 1,2,3,4,5,6,8,9,10,11,12,13 11,13 11,13 3 
C8 1,2,3,4,5,6,9,10,12 1,2,3,4,7,11,13 1,2,3,4, 2 
C9 5,6,10,12 1,2,3,4,5,6,7,8,10,11,12,13 5,6,9,10,12 1 
C10 5,6,9,12 1,2,3,4,5,6,7,8,9, 11,12,13 5,6,9,12 1 
C11 1,2,3,4,5,6,7,8,9,10 ,12,13 7,13 7,13 3 
C12 5,6,9,10 1,2,3,4,5,6,7,8,9,10,11,13 5,6,9,10,12 2 
C13 1,2,3,4,5,6,7,8,9,10,11,12 7,11 7,11 3 

 
According to the leveling performed in the previous step, a graph was formed as shown in figure (4). 
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Figure 4. ISM model for Challenges of Internet of Thing in Smart Manufacturing 

 

Conducting MICMAC analysis requires calculating the driving power and the dependence power of 
each factor, which should be obtained from the summation of each row and the summation of each 
column in the final reachability matrix, respectively. After calculating these values that are given in 
table (7), the coordinate figure is illustrated as in Figure (5) where the position of the factors is specified. 
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Figure 5. MICMAC Analysis 
 

According to the MICMAC analysis, none of the identified challenges are placed in the group of 
autonomous factors (group 1), which means that all the challenges introduced are related to the system 



 

and affect it. Challenges categorized in Group 2 include lack of security and trust management, I -ntra

resistance organizational , Technical and empirical knowledge of management and staff, Top 
management support, and legal issues, which have the potential of highly being influenced (which are 
highly being influenced). In group 3, there are challenges of data Management and integrity, lack of 
sensitive data access Control, Storage capacity and scalability, control of access to sensitive data, 
storage capacity and scalability, privacy, and cost, which are highly interacted with the system. These 
challenges are highly influential and as well as being highly influenced and consequently much more 
attention should be focused on them. partners external of system information of Integration , 
standardization and rapid growth of technology are challenges that have strong driving power that are 
located in the group of linkage  factors (group 4). 

5. Discussion 

Business relationships with other organizations are recognized as a challenge when they do not have 
similar information and security systems. In addition, this challenge can occur when multiple 
organizations with different security and information systems merge with each other (Furnell et al. 
2009).  Given this challenge, the development of IoMT in smart manufacturing requires a common 
platform for global standardization. Common standards throughout the world can enable relationships 
between organizations with other organizations and the integration of organizations al around the 
world. Addressing these two challenges can help remove the next level challenges, including data 
management and integration. Another challenge at the third level is that technology is evolving rapidly 
that is too costly. Therefore, this issue will lead to a cost challenge, which will be addressed at the later 
level. 

The data collected in the system are different, which makes them difficult to manage and integrate. 
On the other hand, due to the sharing of sensitive data related to inventories, bottlenecks and various 
incidents, the implementation of IoMT requires updated approaches in the ethical, technical and legal 
fields. Considering these issues is essential in preventing cyber criminalities because companies are not 
only responsible for the security of their data but also the data security of supply chain partners (Luthra 
and Mangla 2018). Another challenge of the second level, which is privacy, will be largely addressed 
by considering legal issues. Another important issue in implementing IoMT is that all new systems cost 
a lot of money due to the transformation of all aspects of existing systems. Therefore, investing in new 
projects requires the acceptance and support given by top management and this is a challenge that will 
be addressed at level one. 

In the implementation and deployment of any new system, top management support is one of the 
primary key factors and not addressing this organizational factor will create a major challenge in its 
acceptance and implementation (Luthra and Mangla 2018). Because other factors required to implement 
a new project such as capital, human labor and equipment are under the control of senior management 
in the organization. The technical and empirical knowledge of management and staff, in addition to 
helping them gain support for accepting the deployment of a smart system, will also be a reinforcing 
factor in the implementation process, as individuals can share their knowledge and experience with 
others (Furnell et al. 2009). Since human resources play an important role in the implementation and 
advancement of a new project in the organization, addressing this factor in using IoMT is of vital 
importance as it can prevent other challenges. Perhaps the lack of a culture of using new information 
systems can be considered one of the main reasons for intra-organizational resistance within the 
organization). Using the same user account  is not acceptable for employees (Furnell et al. 2009), 2009) 
and will lead to mistrust, which is another level-one challenge. The resulting feeling of insecurity and 
mistrust prevents employees from cooperating in the implementation of IoMT in production systems 
(Afzal et al. 2019). 

6. Conclusion 

In recent years, the use of the Internet of Things in various aspects of business has attracted the 
attention of many researchers and industrialists. One of the applications of the Internet of Things is in 



 

smart manufacturing. Implementing IoMT in manufacturing, like all new and emerging technologies, 
will be associated with challenges that are critical to be identified and addressed. Furthermore, it will 
be vitally important to know which challenges come first and have the greatest impact on the 
implementation of the smart manufacturing system. Therefore, in this study, by reviewing the literature, 
the challenges of IoMT implementation in smart manufacturing were identified and in order to 
determine their importance and level in the automotive industry, the ISM technique was used. 
According to the opinions of experts in automotive industry and ISM technique, the challenges were 
classified into three levels. Afterwards, using MICMAC analysis, it was found that among the 
challenges introduced, the integration of information systems of external partners, standardization and 
the rapid growth of technology have strong driving power and on the other hand, lack of security and 
trust management and top management support are highly influenced compared with other challenges. 

It seems that due to the emergence of smart manufacturing, it includes various dimensions that can 
attract researchers interested in this field. The role of human labor in smart manufacturing, the study of 
technologies required in production processes and the role of intelligence in sustainability are among 
the issues that can be addressed. 
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